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Abstract:  Thirteen coal samples from the Maastrichtian Mamu Formation in the Anambra Basin (SE Nigeria) were analysed 

for total organic carbon (TOC), major and trace elements using LECO C-230 analyser and inductively coupled 

plasma-optical emission spectrometry (ICP-OES) in order to assess the paleoredox depositional conditions of 

sedimentation and the role of clastic input. TOC contents of up to 65% were recorded in the coal samples. The 

organic richness of the coals (average TOC = 34.7%) was due to high organic carbon flux resulting from high 

primary productivity and enhanced organic preservation. The chemical composition of the major oxides in the 

coals are dominated by SiO2 (1.02–52.77%), Al2O3 (0.66 to 20.69%), TiO2 (0.01-2.14%), Fe2O3 (0.04-2.01%) and 

K2O (0.01-1.36%), indicating high detrital quartz and clay mineral content. The SiO2/Al2O3 ratios (1.43 to 3.03), 

TiO2/Al2O3 (0.01-0.11) and K2O/Al2O3 (0.02-0.07) are consistent with limited clastic influx during coal formation. 

Ternary plots of TOC-S-Fe2O3 associations and redox-sensitive trace element ratios indicate dominantly oxic 

environment of deposition for the coal samples. Ni/Co and V/Cr ratios indicate mainly oxic environment and 

V/(V+Ni) ratios inferred variable paleoredox (oxic, anoxic and euxinic) conditions during accumulation of these 

coals. 
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Introduction 

The coal-bearing Mamu Formation (Reyment, 1965) in the 

Anambra Basin (SE Nigeria) extends from Auchi/Agenebode 

area in the west to Ogboyoga in north, along the Awgu-Enugu 

Escarpment to Udi/Enugu area in the east of the basin (Fig. 1). 

The Mamu Formation host a 600m-thick sedimentary 

succession of Maastrichtian age (Simpson, 1954) comprising 

sandstones, shales, mudstones, sandy shales and coal seams. 

The coal seams range from a few centimeters to about 4 

metres. This formation is exposed in coal mines at Ogboyoga, 

Okaba, Ezimo, Orukpa, Enugu, Udi and on the Enugu-Onitsha 

expressway and Awgu-Enugu Escarpment (Fig. 1).  

The study area is located in the Anambra Basin in SE Nigeria 

within latitudes 6o15/ to 7o55/ N and longitudes 7o15/ to 8o00 
/E (Fig. 1). The evolution of the Anambra Basin in 

southeastern Nigeria is linked to the opening of the South 

Atlantic Ocean during Mesozoic Era (Burke et al., 1972; 

Murat, 1972; Nwachukwu, 1972). Sedimentation in the 

Anambra Basin began with the deposition of the marine 

Campanian-Maastrichtian Enugu/NkporoShales and its lateral 

equivalent- the deltaic Owelli Sandstones (Fig. 1). These basal 

units are overlain successively by the Lower Maastrichtian 

Mamu Formation (Lower Coal Measures), Middle 

Maastrichtian Ajali Sandstones (False-Bedded Sandstones) 

and the Maastrichtian-Paleocene Nsukka Formation (Upper 

Coal Measures; Fig. 1). 

Agagu et al. (1985) studied the stratigraphy and sedimentation 

in the Senonian Anambra Basin and described the Mamu 

Formation as representing strandplain to deltaic environments, 

evolving into more open strandplain system. Akande et al. 

(1992) regarded the coals of the Mamu Formation as having 

accumulated in forest and reed marsh swamps within delta 

plain environments. Courel et al. (1991) investigated coal 

occurrence related to sedimentary dynamics and reported 

significant number of dinoflagellates below the coal-bearing 

part of the Mamu Formation, inferring a lower delta plain 

environment of deposition for these beds. Several organic 

geochemical studies have been carried out on coals and source 

rocks of Mamu Formation (Akaegbobi et al., 2000; Obaje et 

al., 2004; Akande et al., 2007; Ogala, 2011; Ogala and 

Akaegbobi, 2014). However, the depositional conditions that 

favoured the accumulation of coals in the Anambra Basin 

during the Upper Cretaceous are not well understood. 

According to Davies et al. (2006), coal seams are highly 

sensitive indicators of changes in accommodation and organic 

productivity. In this study, samples of coals from the 

Maastrichtian Mamu Formation were analysed in order to 

investigate the environmental conditions that permitted the 

accumulation and preservation of organic rich sediments and 

to assess the depositional environment of the coals. 

 

Materials and Methods 

Thirteen coal samples from eleven cores drilled by the 

Nigerian Coal Corporation (NCC) in five coal fields (Enugu, 

Ezimo, Ogboyoga, Orukpa and Okaba) in the Anambra Basin 

were sampled (Fig. 2). Major and trace elements were 

determined at Activation Laboratory, Ontario, Canada, using 

Inductively Coupled Plasma-Optical Emission Spectrometry 

(ICP-OES). Loss on ignition (LOI) measurements were 

performed using gravimetric analysis by weighing a 2 g 

sample before and after ignition at 1050oC. Limits of 

detectable measurement (LDM) for major elements are 0.01% 

for SiO2, Al2O3, Fe2O3(T), P2O5, K2O, Na2O, CaO and MgO; 

0.001% for TiO2 and MnO and 0.01% for S. LDM for trace 

elements are 2 ppm for Te, Bi, Zr, Sr and Ba; 1 ppm for Zn, 

Ni, Mo, Li, Hg, Ga, Cu, Cr, Co, Be, Sc and Y; 5 ppm for W, 

Tl, Sb and V; 0.3 for Cd and Ag; 10 ppm for U; 3 ppm for Pb 

and As. Total organic carbon (TOC) analysis were conducted 

after treatment of the samples with concentrated hydrochloric 

acid to remove carbonates using a LECO C-230 analyzer at 

Humble Geochemical Services, Texas, USA. The enrichment 

factor (EF; Tribovillard et al., 2006) were calculated for trace 

elements (Ti, Fe, Zr, V, Cr, Co, Ni, Cu, Zn, Mo and U) using 

the composition of average upper continental crust (UCC; 

Rudnick and Gao, 2003) as reference: [EFelement= 

(Element/Al)sample/(Element/Al)UCC; Tribovillard et al., 2006]. 

Values of EFelement greater than one (>1) and less than one (<1) 

indicate enrichment and depletion, respectively of element 

relative to its concentration in average upper continental crust. 

According to Liu et al. (2015), enrichments are due to 

hydrothermal or authigenic inputs of materials to the 

sediment. The degree of pyritization (DOP; Berner, 1970; 

Raiswell et al., 1988) was employed in this study in order to 

understand the paleoenvironmental conditions that prevailed 

during sediment accumulation. Degree of pyritization is 

defined as the ratio of pyritized iron to the total amount of 
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reactive iron: (DOP = Fepyrite/Fetotal; Berner, 1970; Raiswell 

and Berner, 1986; Raiswell et al., 1988; Algeo and Maynard, 

2008); where total iron (total-Fe) is the sum of pyrite iron 

(pyrite-Fe) plus HCl-soluble Fe. The values of DOP in this 

study were approximated using total degree of pyritization 

(DOPT) which is defined as the ratio of pyrite-Fe (based on 

total sulphur) to total-Fe (DOPT; Algeo and Maynard, 2008). 

DOPT can be used in place of true DOP, if pyrite sulphur 

composes the bulk of total sulphur and reactive iron composes 

the bulk of total iron (Algeo and Maynard, 2008). 
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Fig. 1: Map of Nigeria showing the location of the study area 
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Fig. 2: Lithologic profiles of sampled boreholes in the study area 

 

Results and Discussion 

Geochemistry 

Major elements, LOI, TOC and sulphur contents for the 

studied coal samples from the Mamu Formation are listed in 

Table 1. The results of the chemical analysis revealed that 

SiO2 (1.02-52.77 %), Al2O3 (0.66-20.69%), Fe2O3(T) (0.04-

2.01%), TiO2 (0.01-2.14%) and K2O (0.01-1.36%) were the 

dominant oxides in all the coal samples (Table 1). The 

contents of MnO, MgO, CaO, Na2O and P2O5 are all <1.0%. 

The sulphur content of the coal is low (0.09-0.97%) for all the 

samples except sample 1267/12 (2.29%; Table 1). The TOC 

content of the coal samples range from 2.33 to 65.19% 

averaging 34.73% (Table 1). The most abundant trace 

elements in the coal samples are Ba (mean~207 ppm), Zr (157 

ppm), Cr (45 ppm), V (42 ppm), Sr (34 ppm), Zn (32 ppm), 

Ni (17 ppm), Cu (16 ppm), Pb (15 ppm) and Y (14 ppm). 

Scandium, Be, Ag, As, B, Cd, Co, Ga, Hg, Mo, Sb, and Te) 

have average values between 0.4 and 9 ppm while Bi, Tl, U 

and W showed values below the detection limit (Table 2). 

These concentration values are generally lower than the 

average values of Post Archean Australian Shale (PAAS; 

Taylor and McLennan, 1985) and Upper Continental Crust 

(UCC; Rudnick and Gao, 2003).  

Total organic carbon-sulphur-iron relationships 

The TOC-S-Fe2O3 distributions for all strata are dominated by 

organic carbon contribution (Table 1). The dominance of 

organic carbon is prominent in the coal strata where Fe2O3 

and S values are very low (Figs. 3a and b; Table 1). Leventhal 

(1979) and Berner and Raiswell (1983) suggested that the 

amount of reduced sulphur in sediment is linked with the 

organic carbon content. They concluded that with increasing 

amounts of organic carbon, a larger amount of organic matter 

is metabolizable and more sulfide is produced. 

On a sulphur versus TOC diagram (Fig. 3a), all samples plot 

below the normal marine line. The coal samples show a 

variable distribution and no covariance of TOC and sulphur 

was observed in the samples. The TOC-Sulphur plot shows no 

correlation and a line fit through the data produces a positive 

intercept at 1.4 (Fig. 3a). This result is similar and comparable 

with those of Rimmer (2004) and Rimmer et al. (2004). The 

lack of correlation between organic carbon (TOC) and sulphur 

(r=0.194) is an indication that sulphur is present not only in 

sulphide form but also as organic and sulphate sulphur (Ogala 

et al., 2010). 
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The relationships between sulphur and Fe2O3 are shown in 

Figure 3b. A positive correlation between S and Fe2O3 

(r=0.608) was observed in the studied coal samples. The 

positive correlation between S and Fe2O3 concentrations in the 

samples strongly suggests that authigenic iron enrichment was 

linked to pyrite formation. Saez et al. (2011) observed that in 

normal marine environments, the presence of non-sulfide iron 

can reflect the existence of non-reactive Fe-bearing minerals 

and low availability of reduced sulphur during sedimentation 

and diagenesis. They concluded that such low sulphur 

availability may inhibit the consumption of all available Fe for 

pyrite formation. On the S versus Fe2O3 diagram (Fig. 3b), six 

samples plot below the pyrite line (S/Fe = 1.15; Fig. 3b), 

indicating that a significant portion of iron is associated with 

non pyrite (Johnson et al., 2010); while the other seven 

samples follow the trend of data for pyrite line proposed by 

Dean and Arthur (1989). 

Ternary plot of TOC-S-Fe2O3 could be used to approximate 

the degree of pyritization (Dean and Arthur, 1989). On the 

TOC-S-Fe2O3 ternary diagram (Fig. 4), six samples plot 

within the normal marine (oxic trend; S/C=0.4) whereas the 

other seven samples tend to cluster at the TOC-pole and 

defines a trend that passes through the origin along the line 

having S/Fe ratio =1.15, suggesting that the Fe is reactive and 

fixed as pyritic sulphur (Rimmer et al., 2004) and also 

practically the entire carbon budget comes from organic 

sources (Saez et al., 2011). Iron and sulphur concentrations 

are extremely low (Fig. 4 and Table 1). The organic richness 

of the coal is due to high primary productivity and enhanced 

organic preservation. The DOPT values of the studied coal 

ranges from 0.07-8.40 (Table 4), indicating variable 

conditions during accumulation of these coals. 

 

 

 

Table 1: Major elements, LOI, TOC and sulfur content (concentrations in %) of coal samples from Mamu Formation 

 
SiO2

a Al2O3
a Fe2O3(T)a MnOa MgOa CaOa Na2O

a K2O
a TiO2

a P2O5
a LOIb Total TOCc Sd 

DL 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.01 0.001 0.01 0.01 0.01 
 

0.01 

1267/12 5.74 2.19 2.01 0.011 0.02 0.07 0.06 0.05 0.093 < 0.01 88.42 98.66 50.16 2.29 

1239/13 4.72 1.79 0.91 0.024 0.03 0.11 0.05 < 0.01 0.141 < 0.01 90.9 98.65 2.40 0.09 

1356/09 15.35 7.86 1.08 0.009 0.15 0.23 0.08 0.23 0.416 0.03 73.16 98.6 6.45 0.59 

1353/07 3.28 1.61 0.49 0.009 0.03 0.09 0.09 0.03 0.087 < 0.01 93.87 99.59 55.55 0.62 

1213/14 1.98 1.18 0.20 0.005 < 0.01 0.02 0.05 0.03 0.022 < 0.01 95.36 98.85 63.45 0.14 

1235/06 1.02 0.66 0.04 < 0.001 < 0.01 < 0.01 0.06 < 0.01 0.011 < 0.01 97.3 99.01 65.19 0.19 

1219/08 7.25 4.14 0.26 0.003 0.02 0.02 0.03 0.06 0.326 0.01 86.56 98.67 53.61 0.45 

1220/10 49.65 20.69 1.36 0.009 0.16 0.02 0.1 0.45 1.919 0.10 24.59 99.04 6.11 0.10 

1001/03 52.77 19.60 1.24 0.007 0.25 0.08 0.13 1.36 2.142 0.09 22.78 100.4 21.57 0.97 

1001/07 48.59 16.02 0.85 0.007 0.14 0.03 0.07 0.56 1.376 0.05 31.1 98.79 8.17 0.16 

1001/10 2.94 2.05 0.05 < 0.001 < 0.01 0.01 0.07 < 0.01 0.02 < 0.01 93.63 98.74 61.42 0.42 
1008/13 3.34 1.40 0.05 < 0.001 < 0.01 < 0.01 0.07 0.07 0.047 < 0.01 93.7 98.70 55.07 0.19 

1002/05 42.37 18.58 1.15 0.007 0.19 0.03 0.08 0.61 1.404 0.14 35.67 100.20 2.33 0.15 

DL: detection limit; a: concentrations determined by using FUS-ICP; b: concentrations determined by using Gravimetry; c:concentrations 
determined by using LECO TOC analyzer; d: concentrations determined by using TD-ICP 

 

Table 2: Trace elements (in ppm) and sulphur (%) content of coal samples from the Mamu Formation 
Element D.L. 1267/12 1239/13 1356/09 1353/07 1213/14 1235/06 1219/08 1220/10 1001/03 1001/07 1001/10 1008/13 1002/05 

Baa 2 161 227 255 147 20 < 2 64 452 388 218 12 12 733 

Sra 2 15 19 46 15 4 < 2 15 66 83 54 3 2 130 

Ya 1 4 2 7 3 < 1 < 1 4 30 54 28 < 1 < 1 48 

Sca 1 1 1 5 2 < 1 < 1 2 14 17 11 < 1 < 1 15 

Zra 2 22 21 56 22 2 2 28 335 739 486 5 6 319 

Bea 1 1 2 2 < 1 2 < 1 3 2 4 3 < 1 < 1 5 

Va 5 14 10 49 17 < 5 < 5 27 99 138 89 < 5 < 5 96 

Agd 0.3 < 0.3 < 0.3 0.3 < 0.3 < 0.3 < 0.3 < 0.3 1.1 0.8 1.1 < 0.3 < 0.3 0.4 

Asd 3 < 3 < 3 < 3 5 < 3 < 3 < 3 < 3 4 4 3 4 3 

Bd 1 < 1 < 1 < 1 < 1 1 3 2 1 1 1 2 2 3 

Bid 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 

Cdd 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 0.3 < 0.3 0.6 0.5 0.4 < 0.3 < 0.3 0.5 

Cod 1 15 < 1 6 2 3 3 3 21 22 20 2 3 13 

Crd 1 46 8 58 29 5 4 37 96 107 81 8 10 89 

Cud 1 12 1 21 14 2 4 22 27 36 25 6 5 30 

Gad 1 11 1 14 3 1 2 10 17 16 16 4 3 21 

Hgd 1 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1 2 < 1 < 1 3 

Mod 1 1 < 1 < 1 < 1 < 1 < 1 1 2 2 1 < 1 < 1 1 

Nid 1 27 1 18 5 5 9 8 30 39 40 4 4 29 

Pbd 3 10 < 3 23 9 < 3 4 12 32 31 22 3 7 31 

Sbd 5 7 < 5 6 < 5 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 

Ted 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 2 4 3 < 2 < 2 < 2 

Tld 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 

Ud 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 10 < 10 < 10 < 10 < 10 < 10 

Wd 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 

Znd 1 20 5 17 6 9 17 14 58 69 67 6 8 115 
a: concentrations determined by using FUS-ICP; d: concentrations determined by using TD-ICP 
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Fig. 4: Ternary diagram showing TOC-S-Fe2O3 relationships of coals from Mamu Formation 
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Paleoredox depositional conditions 

Trace element concentrations in coal have been used by 

different authors (Hart and Leahy, 1983; Swaine, 1983; Orem 

and Finkelman, 2003) as indicators of depositional 

environments. Chou (1984) and Goodarzi (1987, 1988) 

studied the geochemistry, concentration and elemental 

distribution in coal seams and cited elements such as Mo, Mg, 

B, Cl, Br, Na, Y and U as indicators of marine influence. 

Redox-sensitive elements Mo, U, V, Cr, Fe, Mn, Ni, Co, Ba, 

Pb, Cd, Zn, Cu and their ratios have been used to assess 

paleoredox depositional conditions in sedimentary rocks 

(Algeo and Maynard, 2004, Rimmer et al., 2004; Tribovillard 

et al., 2006; Saez et al., 2011). In this study, V/(V+Ni), V/Cr, 

Ni/Co, V/Ni, Cu/Zn, TOC-S-Fe2O3 relationships, DOPT and 

Fe2O3/Al2O3 ratios were used to evaluate the paleoredox 

conditions of depositional environments during sediment 

accumulation. According to Jones and Manning (1994), Ni/Co 

ratios < 5 and V/Cr ratios < 2 suggest oxic conditions; 5-7 and 

2-4.25 (dysoxic conditions) and > 7 and > 4.25 (suboxic to 

anoxic conditions) respectively. The Ni/Co and V/Cr ratios of 
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the studied samples ranges from 1.01-3.0 and 0.3-1.29 

respectively (Table 5), indicating mainly oxic depositional 

environment. Hatch and Leventhal (1992) compared 

V/(V+Ni) ratios to geochemical indices and DOPT, and 

proposed V/(V+Ni) ratios > 0.84 for euxinic conditions, 0.54 

– 0.82 (anoxic waters) and 0.46 – 0.60 (dysoxic conditions). 

Therefore, V/(V+Ni) can be related to redox conditions in 

source rocks depositional environment (Moldowanet al., 

1986; Hatch and Leventhal, 1992; Killops and Killops 2005; 

Peters et al., 2005). Low V/(V+Ni) porphyrin ratios in marine 

Toarcian rocks reflects oxic-suboxic conditions, while high 

ratios reflect anoxic sedimentation (Moldowan et al., 1986; 

Killops and Killops 2005).  

The concentrations of vanadium in the coals of the Mamu 

Formation ranges from < 5 to 138 ppm (mean~41.61 ppm) as 

shown in Table 2. The low vanadium content of the coal 

suggests a low mature and marine/terrestrial sourced coal 

(Adedosu et al., 2007). Low V/Ni ratios (< 0.5) are expected 

for petroleum derived from marine organic matter, with high 

to moderate sulphur content, while V/Ni ratios (1-10) are 

expected from petroleum derived from lacustrine and 

terrestrial organic matter (Barwise, 1990). The value of V/Ni 

ratio of the studied coal ranges from 0.52 to 10.00 (Table 3). 

The source rock depositional environment determines the 

proportionality of vanadium to nickel. The closeness of 

chromium (mean~44.46 ppm) and nickel (mean~16.85 ppm) 

contents as well as V/Ni ratios (0.52-10; Table 3) for the coal 

samples suggest the same depositional environment. Also, 

plots of V/Cr and Ni/Co ratios (Table 3 and Fig. 6a; Jones and 

Manning, 1994) indicate predominantly oxic conditions 

during sediment accumulation. Based on Hatch and Leventhal 

(1992) published thresholds, the V/(V+Ni) ratios for the 

studied samples (Table 3; Fig. 6b) indicate a relatively wide 

range of conditions, from oxic, to anoxic, to possibly euxinic. 

However, V/(V+Ni) ratios predict lower oxygen bottom-water 

conditions (anoxic) than either Ni/Co or V/Cr (Peters et al., 

2005). The V/(V+Ni) ratio can be linked to redox condition in 

source rock and low ratios reflect oxicity while high ratios (> 

0.9) reflect anoxic condition in the depositional environment 

of coal (Peters et al., 2005). The low V/(V+Ni) ratio (0.34-

0.91; Table 3) shows that the coal samples are deposited under 

oxic condition. This is typical of coal depositional 

environment and in agreement with earlier work done by 

Akande et al. (1992). 

The degree of pyritization (DOP) and the ratios of 

Fe2O3/Al2O3 are good indicators of paleoredox conditions 

(Raiswell et al., 1988; Rimmer et al., 2004; Algeo and 

Maynard, 2004; Lyons and Severmann, 2006). According to 

Raiswell et al. (1988), DOP values are typically low for oxic 

depositional environments. Rimmer et al. (2004) suggested 

that DOP values < 0.42 indicate aerobic (normal marine) 

conditions while values > 0.75 point to conditions with 

absence of oxygen (anoxic) and presence of H2S (euxinic 

conditions). They also observed that DOP values between 

0.42 and 0.75 suggest dysoxic conditions (previously referred 

to as restricted) but Raiswell et al. (1988) previously referred 

to conditions linked with DOP values greater than 0.75 as 

inhospitable. Hatch and Leventhal (1992) noted that DOP 

values between 0.67 and 0.75 indicate a less strongly stratified 

water column while values > 0.75 indicate a strongly stratified 

anoxic water column. Lyons and Severmann (2006) suggested 

that DOP values < 0.2-0.3 and Fe2O3/Al2O3 ratios < 0.5 is 

indicative of oxic to suboxic conditions while DOP values > 

0.6 and Fe2O3/Al2O3 ratios > 0.5 suggest euxinic conditions. 

Of the thirteen coal samples studied, four samples (1239/13, 

1220/10, 1001/07 and 1002/05) had DOPT values < 0.3, two 

samples (1356/09 and 1213/14) between 0.42 and 0.75, and 

seven samples (1267/12, 1353/07, 1235/06, 1219/08, 1001/03, 

1001/10 and 1008/13) > 0.75, respectively (Table 3), which 

suggests deposition under variable conditions ranging from 

oxic, to dysoxic and euxinic depositional environments. The 

high DOPT values and the corresponding high TOC contents 

of the coal is indicative of an iron limited environment 

(Raiswell and Berner, 1985), and also the main sulphur sink is 

organic matter rather than pyrite (Bein et al., 1990). This 

assertion is supported by the positive correlation between 

Fe2O3 and S (r=0.608). Majority of the studied coal samples 

have Fe2O3/Al2O3 ratios between 0.4 and 0.5 with exception 

of two samples (1239/13 and 1267/12) having Fe2O3/Al2O3 

ratios > 0.5 (Table 3), suggesting dominantly aerobic (oxic) 

conditions for these coals (Algeo, 2004; Lyons and 

Severmann, 2006; Algeo and Maynard, 2008). 

Berner and Raiswell (1983) and Rimmer et al. (2004) used 

TOC-S relationships to differentiate between normal marine 

from euxinic depositional environments during organic matter 

accumulation. No relationship was observed in the TOC 

versus S plots (Fig. 3a). The lack of correlation between TOC 

and S (r=0.194) and the positive intercept at 1.4 on the TOC 

versus S plot (Fig. 3a) is indicative of accumulation under 

anoxic conditions. This result is in agreement with those of 

Rimmer (2004) and Rimmer et al. (2004). This interpretation 

is also supported by TOC-S-Fe2O3 (Fig. 4) associations which 

suggest variable conditions ranging from oxic to dysoxic and 

anoxic depositional environments during coal accumulation.   

Hallberg (1976) proposed that Cu/Zn ratios reflects redox 

conditions. High Cu/Zn ratios suggest reducing depositional 

conditions whereas low Cu/Zn ratios point to oxidising 

conditions (Hallberg, 1976). The coal samples had Cu/Zn 

ratios (0.20-2.23; Table 3), indicating more oxidising 

conditions during sediment accumulation. 

The enrichment factors (EFs) for the trace elements analyzed 

in the coal samples are listed in Table 4. Among the trace 

metals, Mo shows the greatest enrichment (EFMo mean~2.36; 

range 0.75-6.39) and Fe the smallest enrichment (EFFe 

mean~0.63; range 0.11-2.8; Table 4). In all the samples, most 

trace elements are equal to or depleted in relation to the 

average upper continental crust (UCC; Taylor and McLennan, 

1985; Rudnick and Gao, 2003). Despite the relative 

enrichment, the concentration of Mo in the coal samples are 

extremely low (<1-2 ppm; Table 2) indicating that conditions 

were not strongly anoxic (Rimmer et al., 2004; Von Mann et 

al., 2006). According to Tribovillard et al. (2006), 

molybdenum and uranium shows strong authigenic 

enrichment under reducing depositional conditions. As a 

result, high U/Mo ratios greater than 2 are indicative of 

suboxic bottom water conditions (Liu et al., 2015). The 

concentrations of uranium in the studied samples are below 

detection limit in all samples except for one sample (1220/10; 

U=10) with U/Mo ratio of 5. Furthermore, it is obvious that 

depositional conditions changed during accumulation of these 

coals, the less-organic-rich coal beds (1239/13,1220/10, 

1001/07 and 1002/05) were probably deposited under aerobic 

(oxic) conditions while the high-organic-rich coal strata 

(1267/12, 1356/09, 1353/07, 1213/14,1235/06, 1219/08, 

1001/03, 1001/10, 1008/13) were deposited in dysoxic-anoxic 

environment. The enrichments of uranium (EFU=2.86), 

vanadium (EFV=1.02-1.68) and molybdenum (EFMO=1.35-

6.39) together with enrichments in nickel (EFNi=1.02-4.47) 

and copper (EFCu=1.01-4.79) suggests that anoxia is 

accompanied by a high organic flux. Also the enrichments of 

iron in samples (1267/12 and 1239/13; Table 4) is indicative 

of anoxic conditions during the precipitation as pyrite (Algeo 

and Maynard, 2008). 
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Table 3: Geochemical indices applied to evaluate the coal samples  
Parameter  1267/12 1239/13 1356/09 1353/07 1213/14 1235/06 1219/08 1220/10 1001/03 1001/07 1001/10 1008/13 1002/05 

TiO2/Al2O3 0.04 0.08 0.05 0.05 0.02 0.02 0.08 0.09 0.11 0.09 0.01 0.03 0.08 

Al2O3/TiO2 23.55 12.7 18.89 18.51 53.64 60.00 12.70 10.78 9.15 11.64 102.5 29.79 13.23 

K2O/Al2O3 0.02 
 

0.03 0.02 0.03 
 

0.02 0.02 0.07 0.04 
 

0.05 0.03 
SiO2/Al2O3 2.62 2.64 1.95 2.04 1.68 1.55 1.75 2.40 2.69 3.03 1.43 2.39 2.28 

Fe2O3/Al2O3 0.92 0.51 0.14 0.30 0.17 0.06 0.06 0.07 0.06 0.05 0.02 0.04 0.06 

Fe2O3/TiO2 21.61 6.45 2.60 5.63 9.09 3.64 0.8 0.71 0.58 0.62 2.5 1.06 0.82 
Al2O3/(Al2O3+Fe2O3) 3.01 1.91 2.08 1.49 1.20 1.04 1.26 2.36 2.24 1.85 1.05 1.05 2.15 

Zr/Al2O3 (10-3) 1.01 1.17 0.71 1.37 0.17 0.30 0.68 1.62 3.77 3.03 0.24 0.43 1.72 

TOC/P2O5   
215 

   
5361 61 240 163 

  
16.64 

S/TOC 0.05 0.04 0.09 0.01 0.002 0.003 0.008 0.02 0.05 0.02 0.007 0.004 0.06 

Cu/Zn 0.60 0.20 1.24 2.33 0.22 0.24 1.57 0.47 0.52 0.37 1.00 0.63 0.26 
V/Ni 0.52 10.00 2.72 3.40 0.998 0.55 3.38 3.30 3.54 2.23 1.25 1.25 3.31 

Ni/Co 1.80 1.01 3.00 2.50 1.67 3.00 2.67 1.43 1.77 2.00 2.00 1.33 2.23 

V/Cr 0.30 1.25 0.85 0.59 1.00 1.25 0.73 1.03 1.29 1.10 0.62 0.50 1.08 
V/(V+Ni) 0.34 0.91 0.73 0.77 0.50 0.36 0.77 0.77 0.78 0.69 0.56 0.56 0.77 

DOPT 1.14 0.10 0.55 1.27 0.70 4.75 1.73 0.07 0.78 0.19 8.40 3.80 0.13 

 

 

Table 4: Enrichment factors of coal samples from the Mamu Formation 

Sample number EFTi EFFe EFZr EFV EFCr EFCo EFNi EFCu EFZn EFMo EFU 

1267/12 1.02 2.80 0.80 1.02 3.52 6.23 4.04 3.01 2.1 6.39 
 

1239/13 1.90 1.55 0.94 0.89 0.75 
 

0.18 0.31 0.64 
  

1356/09 1.25 0.42 0.57 0.99 1.24 0.69 0.75 1.47 0.5 
  

1353/07 1.27 0.93 1.09 1.68 3.02 1.13 1.02 4.78 0.86 
  

1213/14 0.44 0.52 0.14 
 

0.71 2.31 1.39 0.93 1.75 
  

1235/06 0.39 0.19 0.24 
 

1.02 4.12 4.47 3.33 5.92 
  

1219/08 1.85 0.19 0.54 1.04 1.5 0.66 0.63 2.92 0.78 3.38 
 

1220/10 2.18 0.20 1.29 0.76 0.78 0.92 0.48 0.72 0.64 1.35 2.86 

1001/03 2.57 0.19 3.01 1.12 0.91 1.02 0.65 1.01 0.81 1.43 
 

1001/07 2.02 0.16 2.42 0.88 0.85 1.13 0.82 0.86 0.96 0.87 
 

1001/10 0.23 0.75 0.20 
 

0.65 0.88 0.64 1.61 0.67 
  

1008/13 0.79 0.11 0.34 
 

1.2 1.94 0.94 1.96 1.31 
  

1002/05 1.78 0.19 1.37 0.82 0.8 0.63 0.51 0.89 1.42 0.75 
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Figs. 6: Cross plots of (a) V/Cr versus Ni/Co and (b) V/(V+Ni) versus Ni/Co (Ranges forV/Cr and Ni/Co are from Jones 

and Manning (1994) while V/(V+Ni) are from Hatch and Leventhal (1992) 
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Role of clastic input 

Elemental concentrations (Si, Ti, Al and K) and their ratios 

have been used as proxy for detrital influx (Nesbitt et al., 

1980; Taylor and McLennan, 1985; Tribovillard et al., 1994; 

Cox et al., 1995; Caplan and Bustin, 1998). The high 

concentrations of SiO2 (1.02-57.77%) and Al2O3 (0.66-

20.69%) with SiO2/Al2O3 ratio (1.43-3.03; Table 3) is 

indicative of high detrital quartz and clay mineral content in 

the coal samples. The positive correlation between SiO2 and 

Al2O3 with MgO, Na2O, K2O, TiO2, P2O5, Fe2O3, Ba, Sr, Y, 

Sc, Zr, Be, V, Ag, Cd, Co, Cr, Cu, Ga, Mo, Ni, Pb, Te and Zn, 

implies that these elements were derived from detrital sources. 

Various authors have used the ratio of TiO2/Al2O3 as proxies 

for clastic influx and consequently rate of sedimentation 

(Caplan and Bustin, 1998), and also as an indicator of grain 

size and paleo-wind strength (Boyle, 1983; Rimmer et al., 

2004). The TiO2/Al2O3 ratios of the studied samples vary 

from 0.01 to 0.11 (Table 3), suggesting that clastic starvation 

contributed to the elevated organic carbon (TOC) 

concentrations and preservation (Rimmer et al., 2004). This 

trend is observed in coal beds (1267/12, 1353/07, 1213/14, 

1235/06, 1219/08, 1001/10 and 1008/13) with very high 

organic carbon while other beds (1239/13, 1356/09, 1220/10, 

1001/03, 1001/07 and 1002/05) with lower organic carbon 

contents display variable trend. The ratio of K2O/Al2O3 can be 

used as a geochemical indicator for the study of sediments 

original composition and intensity of chemical weathering 

(Cox et al., 1995). The K2O/Al2O3 ratios of alkali feldspar 

varies from 0.4 to 1, illite (≈0.3) and clay minerals nearly zero 

(Cox et al., 1995). K2O/Al2O3 ratios > 0.5 point to the 

dominance of alkali feldspar and < 0.4 is indicative of 

minimal alkali feldspar in the sediment original composition. 

The K2O/Al2O3 ratio in the studied sample varies from 0.02-

0.07 (average = 0.03; Table 3), suggesting a minimal 

contribution of fine-grained K-feldspar during accumulation 

of the Mamu coals. 

Calvert and Pedersen (2007) proposed Zr/Al ratios as proxy 

for aeolian inputs to marine sediments. According to Liu et al. 

(2015) zircon and aluminum are highly immobile in the burial 

environment and as such Zr/Al ratios are well preserved. The 

Zr/Al ratios of the studied samples range from 0.24-3.77×10-

3(mean~1.17×10-3; Table 3), suggesting a lack of aeolian 

input. The Zr/Al ratios of the coal strata are comparable to the 

upper continental crust values of 2.36 (UCC; McLennan, 

2001) and Post-Archean Australian Shale of 2.1 (PASS; 

Nance and Taylor, 1976). The Al2O3/TiO2 ratio is generally 

used to differentiate between mafic and felsic source rocks 

(Hayashi et al., 1997). Al2O3/TiO2 ratios < 8 indicate mafic 

while > 21 point to felsic igneous rocks. The Al2O3/TiO2 

ratios for the studied coals vary from 9.15 to 102.5 (Table 3), 

inferring an intermediate and felsic source rocks. 

Hydrothermal influences on the Mamu Formation 

According to Hamade et al. (2003), three sources (detrital, 

biogenic and hydrothermal) are responsible for the presence 

of silica in marine and sedimentary rocks. These sources can 

be differentiated by geochemical indices. Liu et al. (2015) 

suggested that high enrichment of iron and manganese in 

cherts are linked to a hydrothermal source while enrichment 

of aluminum and titanium is associated with detrital source. 

Bostrom et al. (1973) reported that Al/(Al+Fe) ratio less than 

0.4 and Fe/Ti ratio greater than 20 suggest hydrothermal 

source while Al/(Al+Fe) ratio greater than 0.4 and Fe/Ti ratio 

less than 20 point to a terrestrial source. These ratios can be 

supported by using a ternary diagram of Fe-Al-Mn (Adachi et 

al., 1986). The studied coal samples from the Mamu 

Formation had Al/(Al+Fe) ratio greater than 0.4 in all samples 

while Fe/Ti ratio are less than 20 except for one sample 

(1267/12; Table 3). These values suggest that the coals are 

derived mainly from detrital source. Ternary diagram of Fe-

Al-Mn (Fig. 5) shows that all samples plot within the region 

"A", inferring a detrital input during coal accumulation. 

Paleoproductivity influences in the Mamu Formation  

Holland (1978) and Rimmer et al., (2004) reported that the 

presence of nutrients such as nitrogen (N) and phosphorus 

(P2O5) in surface waters controls primary productivity on 

organic matter accumulation. Rodriguez and Philp (2012) 

suggested that organic matter enrichment in marine sediments 

are influenced by productivity. The P2O5 contents of the coal 

ranges from 0.01-0.14 (Table 1). The TOC/P2O5 ratios for the 

studied samples vary from 16.64 to 5361 averaging 1009 

(Table 3). These ratios (TOC/P2O5) are comparable with those 

reported by Rimmer et al. (2004). The TOC/P2O5 ratios for 

data obtained by ICP-OES (Table 3) versus XRF technique of 

Rimmer et al. (2004), show reasonably good agreement. The 

TOC/P2O5 ratios for the coal samples from the Mamu 

Formation are higher than typical C/P ratios for marine 

phytoplankton (106C:1P; Redfield, 1958) with average TOC/ 

P2O5 ratios of 1009 (Table 3). These ratios are similar with 

those reported originally for anoxic laminated black shales 

from the Illinois Basin (Ingall et al., 1993). However, two 

samples (1220/10 and 1002/05) with lower total organic 

carbon intervals exhibit much lower TOC/P2O5 ratios (<100; 

Table 3), which is similar with average values reported 

originally for toxic bioturbated shales (Ingall et al., 1993). 

Nickel, copper, zinc and barium are good elemental 

paleoproductivity proxies and can be used to establish bottom 

water oxygenation and organic carbon sinking flux (Piper and 

Perkins, 2004; Tribovillard et al., 2006; Griffith and Paytan, 

2012). The negative correlation of TOC with Ba (r=-0.792), 

Zn (r=-0.628), Ni (r=-0.578) and Cu (r=-0.578) suggests that 

these elements (Ba, Zn, Ni and Cu) resides in organic matter 

and also indicate that primary productivity rates were an 

important influence on organic carbon enrichment of the coals 

(Liu et al., 2015). 

 

Conclusion 

The geochemistry of organic rich coal beds from eleven 

boreholes penetrating the Maastrichtian Mamu Formation 

were investigated in order to evaluate the paleoredox 

depositional conditions. The elemental composition of the 

coal shows that SiO2, Al2O3 and Fe2O3(T) accounts for over 

75% composition. The high SiO2/Al2O3 ratios and the 

relatively low TiO2/Al2O3 and K2O/Al2O3 ratios are indicative 

of restricted detrital input during accumulation of these coals. 

Geochemical ratios, including Fe2O3/Al2O3, Ni/Co, V/Cr and 

V/ (V+Ni), also indicate variable paleoredox conditions for 

the studied coals, ranging from oxic, anoxic, to possibly 

euxinic. 
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